State	Pattern	Energy and movement	Forces between particles
Solid	Ordered and all touching	Vibrate around fixed positions	Strong forces between particles
Liquid	Random and touching	Move around randomly	Weaker than in a solid
Gas	Random and far apart	Move around randomly	Weak forces of attraction

Density

materials.

For regular solids :

For irregular solids:

Mass measured by top pan balance

Mass measured by top pan balance

the volume of water 'pushed out'

Volume measured by displacement of water

Density is mass per cm³

It can be calculated using:

Density = mass ÷ volume $\rho = m \div V$

Required practical – measuring the density of different

Volume measured by measuring length x breadth x height

This means putting the object into water and measuring

Measure the volum putting them into with 100cm³ water

Measure the volur putting them into catching and meas is displaced

Particle model of matter

Models	+	-	
Particle diagrams	Easy to see/draw arrangement	 Can't see the forces between particles Particles look like flat circles rather than 3D spheres Movement isn't shown 	
Kinetic models (eg marbles or animations)	Easy to see particle arrangement Can see the movement of particles	Can't see forces between particles	
	Zero error	Read the meniscus!	
ne of small objects by neasuring cylinder in		Concer Live of Volume	
	Required practical continued : Density of liquids		
ne of larger objects by a full eureka can and uring the water that	 Find the mass of an empty measuring cylinder using a top pan balance. Pour a known volume (100ml) of liquid into the measuring cylinder. Use the meniscus to measure the volume of the liquid accurately. This is the volume. 		
- Euraka can	4. Now measure the mass of the measuring cylinder + the liquid combined.		
Measuring	 Subtract the mass of the empty measuring cylinder and this is the mass of the liquid. 		
cylinder	Density = mass ÷ volume.		

Internal energy

The temperature of any substance is related to the average speed of its particles.

The internal energy of a system is the total kinetic energy and the potential energy of the particles

The particles in a system vibrate or move around because they have energy in their kinetic energy stores

The faster a particle moves, the greater its kinetic energy store

Low Temperature High Temperature The particles also have energy in their **potential energy stores** due to their position.

As particles <u>move further apart</u>, their potential energy stores <u>increase</u>

Gas pressure

The particles in a gas are in constant random motion They collide with the walls of their container This exerts a force **on the container**.

The more energy the particles have, the higher the temperature.

An increase in temperature of a gas causes the particles to move further apart.

If this is not possible, because of the container, then there is an increase in pressure.

Heating and cooling

When the internal energy of a substance changes, then either :

- The temperature of the substance changes
- The state of the substance changes

This can be seen by plotting the temperature change during **heating** or **cooling**.

Heating a solid would give us a graph that looks like this:

- The temperature stays the same.
- This is when a change of state is happening for example melting.
- The energy transferred is not increasing the mean particle speed – it is increasing the potential energy of the particles.

When the line is increasing (heating) or decreasing (cooling)

- The temperature is increasing / decreasing
- The kinetic energy store is increasing /decreasing
- Average particle speed is increasing /decreasing

Specific latent heat

Specific latent heat is the amount of energy

needed to change 1kg of a substance from one

state to another without changing the temperature.

Specific latent heat will be different for different materials.

- Energy needed to change 1kg of Solid → liquid - specific latent heat of fusion
- Energy needed to change 1kg of Liquid → gas specific latent heat of vaporisation

The amount of energy needed to change 1Kg of a material is found by the equation:

Energy = mass (kg) x specific latent heat (L) E = m L

Specific heat capacity

This is the among of energy needed to change the temperature of 1Kg of a substance by 1°C It is calculated by:

- E = specific heat capacity x mass x temp change
- $E = SHC x m x \theta$